

2 3

6 7

		erral studies(5 IVUS, 7 n follow-up of 30.3 mos
	FFR	IVUS
#	343	563
Typical criterion for deferred revascularization	>0.80	MLA >6.0mm ²
Follow-up (median)	29.0 months	31.5 months
MACE per year	5.1%	6.4%
Death per year	2.6%	3.0%
Non-fatal MI per year	1.5%	0.5%
Revascularization per year	1.8%	2.2%
Predictors of MACE	Type 2 DM, lower dose of adenosine	Plaque burden, # of untreated diseased non- LMCA vessels, pt age, smoking, type 2 DM, any untreated vessel
Cardiovascular Research Foundation	Cerrato et al. Int J Cardiol 20	018;271:42-8

10 11

14 15

18 19

Otolit o	xpans	SIUII				
Test coho	ort of 12	8 pts				
Regression Coefficien	t 95% CI	P-value	Ca	alcium Sc	ore	
7.40	4001.0			ium	≤180°	0
-/:43	-12.6 to -2	.21 <0.01	angle		>180°	2
0.40	0.054 0	45 000	Maximum calc	ium s	0.5mm	0
-3.40	-6.35 to -0	0.02	0.02 thickness		0.5mm	1
0.00	4004.0				≤5mm	0
-3.32	-4.09 to -0	1.55 0.01	Calcium lengt	h	>5mm	1
Validation co	ohort of	133 pts				
					Τ.	-value
(n=27)	(n=45)	(n=34)	(n=3)	(n=24)		-Valu
	6.3	5.9	6.7	5.7		0 21
)	
		86		78		0.01
(93, 108)						
(84, 95)	85 (78.93)	80 (73.93)	(73, 85)	69 (60, 77)		0.01
	Test coho Regression Coefficien -7.43 -3.40 -3.32 Validation Co (n=27) 72 (54,9.2)	Test cohort of 12: Regression Coefficient 95% C -7.43 -12.6 to -2 -3.32 -4.09 to -6 Validation cohort of (m=27) (m=45)	7-43	Test cohort of 128 pts Regression Coefficient 95% Cl P-value Maximum cali angle -3.40 -6.35 to -0.45 0.02 Maximum cali trickness -3.32 -4.09 to -0.55 0.01 Calcium lengt	Test cohort of 128 pts Regression Coefficient 95% CI P-value Maximum calcium Sc -7.43 -12.6 to -2.21 <0.01 Maximum calcium angle -3.40 -8.35 to -0.45 0.02 Maximum calcium indicates angle -3.32 -4.09 to -0.55 0.01 Calcium length Validation cohort of 133 pts 0 1 2 3 4.09 to -0.55 0.01 (n=34) (n=3) (n=24) (n=37) (n=45) (n=34) (n=3) (n=24) (n=34) (n=3) (n=24) (n=34) (n=3) (n=24) (n=34) (n=3) (n=34) (n=3) (n=34) (n=3) (n=34) (n=3) (n	Test cohort of 128 pts Calcium Score 95% Cl Pvalue State S

		Test cohort of					
		Regression Coeff	95% CI	P-value	Cut-off	Calcium	
Length of calciun	n >270° (per 5mm)	-5.5	-9.7, -1.2	0.01	5.0	≤5mm -	0
						>5mm	
Calcium Nodule		-10.2	-16.3 to -4.2	0.0009		absent	0
Vessel diameter (per 1mm)			2.7 to 14.4	0.004		present >3.5mm	1
					3.5	≤3.5mm	1
						absent	
Circumferential c	Circumferential calcium		-25.0 to -3.5	0.009		present	
Ster	t underexpan	sion (<70%) in t	he validati	on cohor	t of 97	pts	
	Cut-off	C-statistics	Sensitivity	Specificity	PP	V N	ΙPV
Score	≥2	0.85 [0.77, 0.93]	89%	63%	48	% 9	4%
In 67 legione		ally visible calcium, bu		11/1/0/-		eticial and	

		IVUS	OCT
Maria manang Kalipanya	Early ST	Restenosis/MACE	Restenosis/MACE/DoCE
underexpansion in stable lesions Small MLA in ACS/MI lesions	- Agui a na Nical Casan (2006) Chaile Agui ann	Communication of the American State (1984) or when a few of the Amer	"One of ACC Common range graded by an and the common and the commo
Edge problems (geographic miss, secondary lesions, large plaque burden, dissections, etc)	-Fuji et al. J Pm Cold Castol 2005;45:065-8 -Chaste et al., Pm J Castoli, 2007;700(#5:00 -Usi et al. 3400; Castoloreac Stern, 2008;2403-34 -Chol et al. Circ Castoloreac Stern, 2011;4:220-47	diament and Am J Carello 2005/91/51-0 - Name at Am J Carello 2005/91/51-0 - Channel at Am J Carello 2008/91/51-01-0 - Channel at Am J Carello 2008/91/51-01-0 - Channel at Am J Carello 2008/91/51-01-0 - Channel at all Am J Carello 2008/91/51-01-0 - Channel at all America Carello	-Otto et al. JACC Cardionace Imaging 2005;11(37):205 -Otto et al. Cit. Cardionace Imary, 2015;03(2):205, -Otto et al. Cit. Cardionace Imary, 2015;03(2):207, -Otto et al. Cit. Cardionace Imary, 2015;03(2):207, -Otto et al. Cit. Cardionace Imary, 2002;12(2):03(6):207, -Otto et al. Cit. Cardionace Imary, 2002;12(2):03(6):03(2
Protrusion in ACS/MI Irregular Protrusion	THE A STATEMENT WAS BEEN AND ASSESSED.	1 - 11	Market for Stationar State Street, par parties.
Stent length (>40mm)		Superate and superate a	1, , 1, , 1
Asymmetry/Eccentricity		Andrews are all habiture than MARKET purisphore or higher bloody and habiture has MARKET WALK	
Acute malapposition		Transit of a fallow fundamental and the first fermion to the	State and Service Services

Suboptimal criterion	Suboptimal	Optimal	HR (95% CI)	P-value
MSA <5.0mm ²	23/307 (7.5%)	21/764 (2.7%)	3.90 (1.99-7.65)	<0.001
MSA/average reference lumen <90%	30/762/ (3.9%)	14/309 (4.5%)	1.32 (0.62-2.81)	0.5
MSA/average reference lumen <80%	20/441 (4.5%)	24/630 (3.8%)	1.33 (0.69-2.55)	0.4
MSA/distal reference lumen <100%	31/695 (4.5%)	13/374 (3.5%)	1.38 (0.67-2.86)	0.4
MSA/distal reference lumen <90%	24/442 (5.7%)	20/647 (3.1%)	2.16 (1.12-4.19)	0.022

Stent expansion in AD	APT-DES
2-yr CDTLR/DefiniteST ◆ WSAN, 52 mmi Vesson, 52 mm	Clinically-Driven TLR or Definite ST (%) 7.8% 6.9% AII MSA/Vessels-38.9% MSAVessels-38.9% 2.1% 2.2% 2.3% 2.3% 2.8% 2.8% 2.8% 2.9% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%
MSA 18 mm ² 0 2 4 6 8 10 12 14 16 18 20 22 Was 42 mm ² MSA Vessel 18.3 mm ² MSA Vessel 38.9% MSA (mm ²) MSA 5.8 mm ² MSA 5.8 mm ² Larger superficial calcium are and percent plaque volume were as rea, whereas the larger volume of attenuated (i.e. lipidic) plaque balloon pressures were associated with greater MSA (mm ²) Carciovascular Fujimura et al. JACC Cardiovascular Stephen 2021;1	O1 O2 O3 (44.5mm) (45.5mm) (58.76mm) (27.6mm) MSA (mm²) stratified by quartiles ssociated with a smaller MSA/vessel and use of larger balloons or higher A/vessel area ratios.

Outcome	OCT variable	Hazard ratio (95% CI)	P value	
Target lesion failure	Minimal stent area, per 1 mm ²	0.76 (0.68, 0.86)	<0.0001	
	Proximal edge dissection, any	1.77 (1.20, 2.62)	0.004	
Cardiac death or TV-MI	Minimal stent area, per 1 mm ²	0.82 (0.70, 0.95)	0.009	
	Stent length, per 5 mm	1.08 (1.02, 1.15)	0.009	
Ischemia-driven TLR	Intra-stent flow area, per 1 mm ²	0.72 (0.62, 0.84)	<0.0001	
	Proximal edge dissection, any	1.88 (1.16, 3.03)	0.01	
	Plaque or thrombus protrusion, major	1.95 (0.97, 3.92)	0.06	
Stent thrombosis	Minimal stent expansion, per 10%	0.71 (0.55, 0.93)	0.01	

30 31

In non-LMCA or ostial LAD lesions. . .

• The MSA is the most consistent predictor of events after DES implantation, and an MSA of at least ≈5.5mm² should be the goal in a non-LMCA lesion with no geographic miss or complications.

• If an MSA of 5.5mm² cannot be achieved, then a measure of relative stent expansion should be the next goal.

38 39

The benefits of IVI guidance are dependent on the % of DES-treated lesions that are optimized according to these IVI criteria

Reference	Stı	udy	Optimal Post-PCI Criteria	Achieved
Hong. JAMA. 2015;314:2155-63	IVUS	-XPL	MLA > distal RLA	54%
Zhang. J Am Coll Cardiol. 2018;72:3126-37	ULTI	MATE	MSA >5mm² or >90% of distal reference lumen Plaque burden <50% within 5mm proximal and distal to stent edge No edge dissection involving media with length >3mm	53%
Ali. Lancet 2016;388:2618-28	ILUM	IIEN III	MSA >90% in both proximal and distal halves of the stent relative to the closest RLA	41%
Kim. Eurointervention 2020;16:e480-8	Yonsei Me	eta-Analysis	MSA ≥5.5mm² or 80% of mean RLA	59%
Leone. J Am Heart Assoc.	FORZA-FFR		FFR ≥0.90	47%
2019;8:e012772. doi: 10.1161/JAHA.119.012772	FORZA-OCT		No major stent malapposition (>350µm, or <350µm >200µm for a length >600µm), MSA >75% of the RLA; No major edge dissection (length >600µm)	65%
Koo et al. N Engl J Med. FLAVOUR-FFR		UR-FFR	FFR≥0.88 or a difference <0.05 across the stent	50%
2022;387:779-789	FLAVOUR-IVUS		MLA ≥5.5mm² and plaque burden at stent edge ≤55% or in-stent MLA ≥ distal RLA	55%
Yamamoto et al. JACC Asia 2023;3:211-225	OPT	rvus	MSA > distal RLA (stent length ≥28mm), and MSA >0.8 × average RLA (stent length <28mm)	40%
Lee. N Engl J Med 2023;388,1688-79		E COMPLEX PCI	MSA >80% of the mean RLA or absolute MSA >5.5mm² (for the LMCA, >7mm² distally and >8mm² proximally) and no major dissection (<5mm from the edge of the stert and extending to the medial layer with a dissection angle >60° or length >3mm) or malapposition (>0.4mm or >1mm long)	56%
Ali. N Engl J Med. 2023;389:1466-76	ILUM	IIEN IV	MSA >90% in proximal and distal segments of the stent relative to the closest RLA.	41%
Kang, Circulation, 2023;148:1195-	остіл	JS: IVUS		60%
1206	OCTIV	US: OCT	MSA >5.5mm² by IVUS or >4.5mm² by OCT; MSA >80% of the mean reference lumen area; avoidance of a landing zone in a plaque burden >50% or ligid-rich tissue at the stent edge; no	53%
Kang, J Am Coll Cardiol 2024;83:401-	octivus:	IVUS	avoidance or a landing zone in a piaque burden >50% or lipid-nich tesue at the stent edge; no major stent malapposition or edge dissection	46%
413	Complex	OCT		38%

40 41

Major Adverse Cardiac Events

All-cause Death

All-cause

46 47

N	IVI (IVUS or OCT) vs Angiography			vs			IV	US vs (ОСТ	
Outcome	RCTs	Pts	Events	Direct Estimate	RCTs	Pts	Events	Direct Estimate	Indirect Estimate	Network Estimate
TLF	19	13,030	1021	0.71 [0.63, 0.80]		3324	154	0.89 [0.65, 1.22]	1.25 [0.96, 1.64]	1.08 [0.89, 1.33]
Cardiac death	18	12,913	178	0.55 [0.41, 0.75]		3324	25	1.06 [0.50, 2.22]	1.09 [0.54, 2.19]	1.07 [0.65, 1.79]
TV-MI	18	12,913	442	0.82 [0.68, 0.98]		3324	41	0.63 [0.34, 1.20]	1.02 [0.68,1.53]	0.89 [0.64, 1.25]
TLR	18	12,945	507	0.72 [0.60, 0.86]		3324	98	0.88 [0.59, 1.30]	1.47 [1.00, 2.15]	1.14 [0.87, 1.50]
Stent thrombosis	19	13,030	98	0.53 [0.35, 0.82]		3324	6	0.67 [0.17, 2.72]	0.95 [0.39, 2.32]	0.86 [0.40, 1.82]
All cause death	18	12,913	331	0.75 [0.60, 0.93]		3324	67	1.08 [0.67, 1.72]	0.90 [0.55, 1.47]	0.99 [0.71, 1.39]
All MI		12,913	531	0.84 [0.71, 0.99]		3324	59	0.71 [0.39, 1.27]	1.06 [0.74, 1.54]	0.95 [0.69, 1.29]
TVR	18	12,945	600	0.72 [0.62, 0.85]		3324		1.06 [0.76, 1.47]	1.47 [1.04, 2.09]	1.23 [0.97, 1.57]
Cardiovasci Research Found				Stone et al.	Lancet, ir	n press				

50 51

	MACE
IVI-guided vs Angio-guided PCI Functionally-guided vs Angio-guide IVI-guided vs Functionally-guided F	
1 st strat	egy is better 2 nd strategy is better
Cardiovascular Death	MI
IVI-guided vs Angio-guided PCI	IVI-guided vs Angio-guided PCI 0.81 [0.66, 0.95 0.78 [0.63, 0.96 0.78 [0.63, 0.98 [0.63, 0.98 0.78 [0.
1st strategy is better 2nd strategy is better	1≝ strategy is better 2 nd strategy is better
Stent thrombosis	TLR
NI-guided vs Angio-guided PCI	IVI-guided vs Angio-guided PCI 0.75 [0.57, 0.99 I.14 [0.72, 1.80 IVI-guided vs Functionally-guided PCI 0.66 [0.40, 1.08 IVI-guided

	Rate Ratio (95% CI)	Risk for Angio- guided PCI	Absolute risk reduction (95% CI) for IVI- guided PCI	Category of Evidence
SYNTAX 0-22				
Cardiac Death	0.53 (0.39 to 0.72)	48 per 1000	23 (29 to 13) fewer	High
М	0.81 (0.68 to 0.97)	78 per 1000	15 (25 to 2) fewer	High
	0.44 (0.27 to 0.72)	16 per 1000	9 (12 to 4) fewer	High
TVR	0.74 (0.61 to 0.89)	108 per 1000	28 (42 to 12) fewer	High
TLR	0.71 (0.59 to 0.86)	121 per 1000	28 (42 to 12) fewer	High
All cause death	0.81 (0.64 to 1.02)	89 per 1000	17 fewer (32 fewer to 2 more)	Moderate
SYNTAX 22-32				
Cardiac Death	0.53 (0.39 to 0.72)	88 per 1000	41 (54 to 25) fewer	High
М	0.81 (0.68 to 0.97)	112 per 1000	21 (35 to 3) fewer	High
	0.44 (0.27 to 0.72)	19 per 1000	11 (14 to 5) fewer	High
TVR	0.74 (0.61 to 0.89)	113 per 1000	29 (44 to 12) fewer	High
		128 per 1000	37 (57 to 18) fewer	
All cause death	0.81 (0.64 to 1.02)	138 per 1000	26 fewer (50 fewer to 3 more)	Moderate
SYNTAX ≥33				
Cardiac Death	0.53 (0.39 to 0.72)	136 per 1000	64 (83 to 38) fewer	High
	0.81 (0.68 to 0.97)	101 per 1000	19 (32 to 3) fewer	High
	0.44 (0.27 to 0.72)	23 per 1000	13 (17 to 6) fewer	High
	0.74 (0.61 to 0.89)\	145 per 1000	38 (57 to 16) fewer	
All cause death			26 fewer (69 fewer to 4 more)	Moderate

54 55

58 59

62 63

66 67

70 71

Study	Endpoint	Events	P-valu
Kim et al. Am J Cardiol 2010;106:612-8	All cause mortality	HR 0.31 [0.13-0.74]	0.008
Kim et al. Am Heart J 2011;161:180-7	Death/MI	HR 0.44 [0.12-0.96]	0.04
Patel et al. Am J Cardiol. 2012;109:960-5	Death/MI	OR 0.38 [0.20-0.74]	0.005
Maehara et al. J Am Coll Cardiol 2013;62:B21-B22	ST/Cardiac Death/MI	HR 0.45 [0.27, 0.74]	0.001
Chen et al. Catheter Cardiovasc Interv. 2013;81:456-63	Cardiac Death	0.6% vs 5.3%	<0.001
Chen et al. Circ Cardiovasc Interv 2017;10:e004497	MI	1.8% vs 5.4%	0.043
Zhang et al. J Am Coll Cardiol 2018;72:3126-37	TVF	HR 0.40 [0.16-0.98]	
O	MACE	15.2% vs 22.4%	0.01
Chen et al. Int J Cardiovasc Imaging 2018;34:1685-96.	Cardiac Death	1.3% vs 6.5%	0.002
Choi et al. JACC Cardiovasc Interv 2019;12:607-20	Cardiac Death	HR 0.68 [0.50-0.93]	0.017
Shlofmitz et al. Am Heart J 2020;221:74-83	MACE	9% vs 18%	
V	<1yr MACE	OR 0.55 [0.42-0.70]	<0.001
Yang et al. Medicine (Baltimore) 2020;99:e20798	≥1yr Cardiac Death	OR 0.36 [0.23-0.57]	<0.001
Franchin et al. Am J Cardiol 2021;156:24-31	Stent Thrombosis	HR 0.42, CI 0.23 to 0.78	0.006
Holm et al., NEJM 2023;389:1477-87	MACE	0.68 (0.46-1.00)	0.033

	В	are Meta	l Stents		Drug-eluting Stents				
	Stent Thrombosis		Restenosis		Stent Thrombosis			Restenosis	
	<30d	>1y	<5y	>5y	<30d	30d - 1y	>1y	<18m	>18m
Intimal hyperplasia		IVUS OCT	IVUS OCT	IVUS OCT			IVUS OCT	IVUS OCT	IVUS OCT
Procedure-related complications including underexpansion	IVUS OCT		IVUS OCT		IVUS OCT			IVUS OCT	
Late malapposition or aneurysm							IVUS OCT		
Vessel wall inflammation							х		
Stent fracture	IVUS OCT	IVUS OCT			IVUS OCT		IVUS OCT		IVUS OCT
Delayed healing									
Uncovered stent struts/fibrin deposition						ост	ост		
Neoatherosclerosis		OCT NIRS		OCT NIRS			OCT NIRS		OCT NIRS

Clinical problem	FFR	NHPR	IVUS	RF-IVUS	ОСТ	NIRS
Assessing lesion severity						
Non-LMCA*	++	++	+		+	
Tandem lesions	+	++				
LMCA*	++		++			
Identifying the culprit lesion			±		++	±
Identifying vulnerable plaque				+	+	+
PCI Guidance			1			
Predicting distal embolization			+			+ 11
Calcium			+		**	
Guiding CTO intervention			**		- 11 T	
Routine DES optimization*			**		**	
Jailed sidebranch	++					
LMCA stenting			**			1. 1. 1.
Minimizing contrast			**			
Assessing stent failure			+		++	, <u> </u>
Cardiovascular Research Foundation	* P	ersonal p	oreferen	се		

